Home
Class 11
MATHS
Let f(x)=sin x;g(x)=x^(2) and h(x)=log x...

Let `f(x)=sin x;g(x)=x^(2)` and `h(x)=log x` . If `u(x)=h(f(g(x)))` ,then `(d^(2)u)/(dx^(2))|_(x=(sqrt(pi))/(2))` is `P` ,value of `|[P]|` is ( [.] denotes GIF )

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sinx,g(x)=x^(2) and h(x)=log_(e)x. If F(x)=("hog of ")(x)," then "F''(x) is equal to

let f(x)=e^(x),g(x)=sin^(-1)x and h(x)=f(g(x)) th e n fin d (h'(x))/(h(x))

Let f(x) =sinxandg(x)=x^(3) (d)/(dx)f(g(x)) at x=(pi)/(2) is ________.

Let f(x)={x-1,-1<=x<0 and x^(2),0<=x<=1,g(x)=sin x and h(x)=f(|g(x)|)+[f(g(x)) Then

Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integer function. Then h'((pi)/(2)) is