Home
Class 12
MATHS
If vec F =2 hat i + 3hat j +4hat k acts ...

If `vec F =2 hat i + 3hat j +4hat k` acts on a body and displaces it by `vec S =3 hat i + 2hat j + 5 hat k`, then the work done by the force is

Promotional Banner

Similar Questions

Explore conceptually related problems

A force (3 hat(i)+4 hat(j)) acts on a body and displaces it by (3 hat(i)+4 hat(j))m . The work done by the force is

A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

A force vec(F) = (2hat(i) - 3hat(j) +7hat(k)) N is applied on a particle which displaces it by vec(S) = (4hat(i)+5hat(j) +hat(k)) . Find the work done on the particle .

A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3 hat(k)) to the point B(3hat(i) - hat(j)+5hat(k)) . The work done by the force will be

A body is displaced from vec r_(A) =(2hat i + 4hatj -6hat k) to vecr_(B) = (6hat i -4hat j +3 hat k) under a constant force vec F = (2 hat i + 3 hat j - hat k) . Find the work done.

Given four forces : vec F_1 = 3 hat i - hat j + 9 hat k vec F_2 = 2 hat i - 2 hat j + 16 hat k vec F_3 = 9 hat i + hat j + 18 hat k vec F_4= hat i + 2 hat j - 18 hat k If all these forces act on a particle at rest at the origin of a coordinate system, then identify the plane in which the particle would begin to move ?

If vec a= hat i+ hat j+ hat k , vec adot vec b=2 and vec ax vec b=2 hat i+ hat j-3 hat k , then vec a+ vec b=5 hat i-4 hat j+2 hat k (b) vec a+ vec b=3 hat i+2 vec k vec b=2 hat i- hat j+ hat k (d) vec b= hat i-2 hat j-3 hat k

Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d vec c= hat i+ hat j-2 hat k be three vectors. A vector in the plane of vec ba n d vec c , whose projection on vec a is of magnitude sqrt(2//3) , is a. 2 hat i+3 hat j-3 hat k b. 2 hat i-3 hat j+3 hat k c. -2 hat i- hat j+5 hat k d. 2 hat i+ hat j+5 hat k

A force vec(F)=3hat(i)+chat(j)+2hat(k) acting on a particle causes a displacement vec(d)=-4hat(i)+2hat(j)+3hat(k) . If the work done is 6J then the value of 'c' is

If vec a=4hat i+3hat j+hat k and vec b=hat i-2hat k, then find |2hat bxvec a|