Home
Class 12
MATHS
lim (nrarroo)(1)/(n^(6)){(n+1)^(5)+(n+2)...

`lim _(nrarroo)(1)/(n^(6)){(n+1)^(5)+(n+2)^(5)+...+(2n)^(5)}`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) (1)/(n^(6)){(n+1)^(5)+(n+2)^(5)+...+(2n)^(5)}

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)((1^(4))/(1^(5)+n^(5))+(2^(4))/(2^(5)+n^(5))+(3^(4))/(3^(5)+n^(5))+--+(n^(4))/(n^(5)+n^(5)))

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

Lim_(nrarroo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

lim_(nrarroo)((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+....+(1)/(sqrt(n^(2)-(n-1)^(2)))) is equal to