Home
Class 11
MATHS
If f(x)=log cos^(-1)x ,alpha is element...

If `f(x)=log cos^(-1)x` ,`alpha` is element in subset of its domain of `f(x)` , then a possible value of `[alpha]+1` is (Where [.] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=2[x]+cos x, then f:R rarr R is: (where [] denotes greatest integer function)

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is