Home
Class 12
MATHS
The range of the function f(x)=(sin(pi[x...

The range of the function `f(x)=(sin(pi[x]))/(x^(2)+1)` (Where [ ] denotes greatest integer function) is
(A) `{0}`
(B) `(-oo,oo)`
(C) `(0,1)`
(D) `R-{0}`

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is the greatest integer function) is

The range of the function f(x)=(sin(pi[x^(2)+1]))/(x^(4)+1), where [.] denotes the greatest integer function,is

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is

The range of the function f(x)=sin(sin^(-1)[x^(2)-1]) is (where[*] represents greatest integer function)

The range of the function y=[x^(2)]-[x]^(2)x in[0,2] (where [] denotes the greatest integer function),is

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

The range of the function f(x)=cos[x],-(pi)/(4)

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

" The range of the function "f(x)=sin(sin^(-1)[x^(2)-1])" is (where "[" .] represents greatest integer function) "

The range of the function y=f(x)=sin[x],-(pi)/(4)