Home
Class 11
MATHS
If |z|=1 and |omega-1|=1 where z, omega ...

If `|z|=1` and `|omega-1|=1` where `z, omega in C` ,then the range of values of `|2z-1|^(2)+|2 omega-1|^(2)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=1 and omega=(z-1)/(z+1) (where z in -1 ), then Re (omega) is

If |(z-1)/(z-4)|=2 and |(w-4)/(w-1)|=2 , (where z,w in C ) .Then the value of |z-w|_(max)+|z-w|_(min)

If |z-1|<=2and| omega z-1-omega^(2)|=a where omega is cube root of unity,then complete set of values of a is 0<=a<=2 b.(1)/(2)<=a<=(sqrt(3))/(2)c(sqrt(3))/(2)-(1)/(2)<=a<=(1)/(2)+(sqrt(3))/(2)d.0<=a<=4

Let z and omega be two complex numbers such that |z|=1 and (omega-1)/(omega+1) = ((z-1)^2)/(z+1)^2 then value of |omega-1| +|omega+1| is equal to____________

If omega ne 1 is a cube root of unity and |z-1|^(2) + 2|z-omega|^(2) = 3|z - omega^(2)|^(2) then z lies on

If w=(z)/(z-(1)/(3)i) and |w|=1, then z lies on

If |z|<=1 and | omega|<=1, show that |z-omega|^(2)<=(|z|-| omega|)^(2)+(argz-arg omega)^(2)

Let z and omega be two complex numbers such that |z|<=1,| omega|<=1 and |z+omega|=|z-1vec omega|=2 Use the result |z|^(2)=zz and |z+omega|<=|z|+| omega|