Home
Class 12
MATHS
Vector product of three vectors vec a,ve...

Vector product of three vectors `vec a,vec b` and `vec c` of the type `vec a times(vec b timesvec c)` is known as vector triple product. It is defined as `vec a times(vec b timesvec c) = (vec a*vec c)vec b-(vec a*vec b)vec c`. Vector triple product `vec a times(vec b timesvec a)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors vec a;vec b;vec c find [vec a+vec b;vec b+vec c;vec c+vec a]

vec a times(vec b timesvec c)" is equal to : (A) (vec a*vec b)vec c-(vec a*vec c)vec b (B) (vec a*vec b)vec a-(vec a*vec b)vec c (C) (vec a*vec c)vec b-(vec a*vec b)vec c (D) (vec a*vec b)vec c-(vec a*vec c)vec b

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

If vec a, vec b and vec c are non-coplanar vector and vec a times vec c is perpendicular to vec a times(vec b times vec c) ,then the value of [vec a times(vec b times vec c)]times vec c is equal to :

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

If vec a+vec b+vec c=vec 0 ,then (1) vec a timesvec b=vec b timesvec c=vec c timesvec a (2) vec a timesvec b=vec c (3) vec a.vec b=vec b.vec c=bar(c).bar a

show that (vec B timesvec C)*|vec A times(vec B timesvec C)|=0

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a), vec c xx (vec a xxvec b) are

The scalar triple product [vec a + vec b-vec cquad vec b + vec c-vec aquad vec c + vec a-vec b is equal to