Home
Class 12
MATHS
Let Lim(x rarr1)([x])/(x)=l and lim(x ra...

Let `Lim_(x rarr1)([x])/(x)=l` and `lim_(x rarr1)(x)/([x])=m` where [ .] denotes the greatest integer function, then

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr-1)([x]+|x|). (where [.] denotes the greatest integer function)

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function

lim_(x rarr1^(-1))([x])^(1-x) where [.] denotes greatest integer function

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

lim_(x rarr1)(x sin(x-[x]))/(x-1) ,where [.]denotes the greatest integer function, is

lim_(x rarr0)(x[x])/(sin|x|) , where [.] denote greater integer function

lim_(x rarr2)(-1)^([x]), where [x] is the greatest integer function,is equal to

lim_(x rarr2)(-1)^([x]), where [x] is the greatest integer function,is equal to

let l=lim_(x rarr2)([x])/({x}) and m=lim_(x rarr2)({x})/([x])