Home
Class 12
MATHS
If normal to x^(2)/a^(2)+y^(2)/b^(2)=1 a...

If normal to `x^(2)/a^(2)+y^(2)/b^(2)=1` at any point `P` meets the major axis is `G` and `PN` is perpendicular to the major axis then `(CG)/(CN)`= (where `C` is the centre of the ellipse) "

Promotional Banner

Similar Questions

Explore conceptually related problems

The tangent at point P on the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 cuts the minor axis in Q and PR is drawn perpendicular to the minor axis. If C is the centre of the ellipse, then CQ*CR =

The tangent at P on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 cuts the major axis in T and PN is the perpendicular to the x -axis, C being centre then CN.CT

If the normal at P(theta) on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 with focus S ,meets the major axis in G. then SG=

If C is centre of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 and the normal at an end of a latusrectum cuts the major axis in G, then CG =

For the hyperbola (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , the normal at point P meets the transverse axis AA' in G and the connjugate axis BB' in g and CF be perpendicular to the normal from the centre. Q. The value (PF*PG)/((CB^(2))) is equal to

For the hyperbola (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , the normal at point P meets the transverse axis AA' in G and the connjugate axis BB' in g and CF be perpendicular to the normal from the centre. Q. The value PF*Pg is equal to

If the normal at any point P of the ellipse x^2/a^2 + y^2/b^2 = 1 meets the major and minor axes at G and E respectively, and if CF is perpendicular upon this normal from the centre C of the ellipse, show that PF.PG=b^2 and PF.PE=a^2 .

For the hyperbola (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , the normal at point P meets the transverse axis AA' in G and the connjugate axis BB' in g and CF be perpendicular to the normal from the centre. Q. Locus of middle-point of G and g is a hyperbola of eccentricity

If the normal at any given point P on the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 meets its auxiliary circlet at Q and R such that angleQOR = 90^(@) , where O is the centre of the ellispe, then

Equation (x^(2))/(k^(2)-3)+(y^(2))/(2k)=1 represents an ellipse with y-axis as the major axis if k in