Home
Class 10
MATHS
If x/a = y/b = z/c, then show that x^(...

If ` x/a = y/b = z/c`, then show that `x^(3)/a^(3) + y^(3)/b^(3) + z^(3)/c^(3) = 3 ((x+y+z)/(a+b+c))^(3)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Answer any one question : If x : a = y : b = z : c, then show that (x^3)/(a^3) + (y^3)/(b^3) + (z^3)/(c^3) = (3xyz)/(abc) .

If x : a = y : b = z : c , then prove that x^(3)/a^(2) + y^(3)/b^(2) + z^(3)/c^(2) = ((x+y+z)^(3))/((a+b+c)^(2))

If x/(a)=y/(b)=z/(c) show that x^(3)/(a^(3))+y^(3)/(b^(3))+z^(3)/(c^(3))=(3xyz)/(abc)

If x/a=y/b=z/c, then show that (x^3+a^3)/(x^2+a^2)+(y^3+b^3)/(y^2+b^2)+(z^3+c^3)/(z^2+c^2)=((x+y+z)^3+(a+b+c)^2)/((x+y+z)^2+(a+b+c)^2).

x^(3)(y-z)^(3)+y^(3)(z-x)^(3)+z^(3)(x-y)^(3)

If (x)/(a)=(y)/(b)=(z)/(c), then show that (x^(3)+a^(3))/(x^(2)+a^(2))+(y^(3)+b^(3))/(y^(2)+b^(2))+(z^(3)+c^(3))/(z^(2)+c^(2))=((x+y+z)^(3)+(a+b+c)^(2))/((x+b+z)^(2)+(a+b+c)^(2))

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b) ^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b) ^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)