Home
Class 11
MATHS
Prove the following by using the princip...

Prove the following by using the principle of mathematical induction for all `n in N`:`1^2+3^2+5^2+...+(2n-1)^2=(n(2n-1)(2n+1))/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in N : 1^2+3^2+5^2+dotdotdot+(2n-1)^2=(n(2n-1)(2n+1))/3

Prove the following by using the principle of mathematical induction for all n in Nvdots1^(2)+3^(2)+5^(2)+...+(2n-1)^(2)=(n(2n-1)(2n+1))/(3)

Prove the following by using the principle of mathematical induction for all n in N :- 1 +3 + 3^2 +....+3^(n-1)=((3^n-1))/2 .

Prove the following by using the principle of mathematical induction for all n in N :- 1 +2 + 3 +...+n < 1/8(2n+1)^2 .

Prove the following by using the principle of mathematical induction for all n in N 1+2+3+…….+n lt 1/8 (2n+1)^2

Prove that by using the principle of mathematical induction for all n in N : 1^(2)+3^(2)+5^(2)+...(2n-1)^(2)= (n(2n-1)(2n+1))/(3)

Prove that by using the principle of mathematical induction for all n in N : 1^(2)+3^(2)+5^(2)+...(2n-1)^(2)= (n(2n-1)(2n+1))/(3)

Prove that by using the principle of mathematical induction for all n in N : 1^(2)+3^(2)+5^(2)+...(2n-1)^(2)= (n(2n-1)(2n+1))/(3)

Prove the following by using the principle of mathematical induction for all n in N : 1 + 2 + 3 + ... + n <1/8(2n+1)^2 .

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+1)>2n+1