Home
Class 12
MATHS
In a triangle ABC, a ge b ge c. If (a^...

In a triangle `ABC, a ge b ge c.` If
`(a^(3)+b^(3)+c^(3))/(sin ^(3)A +sin ^(3) B+sin ^(3)C)=8,` then the maximum value of a `sin^(3) A+sin ^(3) B+ sin^(3)C`

Promotional Banner

Similar Questions

Explore conceptually related problems

The largest side of a triangle ABC that can be inscribed in acrcle so that (a^(3)+b^(3)+c^(3))/(sin^(3)A+sin^(3)B+sin^(3)C)=64 is (where a,b,c are lengths of sides opposite to vertices A,B,C of the triangle ABC respectively)

If 0<=A,B,C<=pi and A+B+c=pi than the minimum value of sin3A+sin3B+sin3C is

In any triangle ABC, prove that : a^3 sin (B-C)+ b^3 sin (C-A)+ c^3 sin (A-B)=0 .

In any triangle ABC, prove that: a^(3)sin(B-C)+b^(3)sin(C-A)+c^(3)sin(A-B)=0

In a triangle ABC , a =2,b=3 and sin A = (2)/(3) then cos C=

a^(3)( sin^(3)B-sin^(3)C) + b^(3) (sin^(3)C-sin^(3)A) + c^(3)( sin^(3)A-sin^(3)B) = 0

(xiii) a^(3) sin (B-C) + b^(3) sin (C-A) + c^(3) sin(A-B)=0