Home
Class 10
MATHS
If f(x)=t^(2)+(3)/(2)t, then f(q-1)=...

If `f(x)=t^(2)+(3)/(2)t`, then `f(q-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 1/x^(2) int_2^(x)[t^(2)+f^(')(t)]dt, then f^(')(2) =

If f(x)=1+3int_(0)^(x)t^(2)f(t)dt, then the number of solution of f(x)=x^(2)+1 is

If f(x)=3-2x+x^(2) , then ((f(x+t)-f(x))/(t)) =

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .