Home
Class 12
MATHS
Evaluate the limit . Lt( n to oo) (1+2...

Evaluate the limit .
`Lt_( n to oo) (1+2^(4)+3^(4)+…….+n^(4))/(n^(5))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

Evaluate the limit . Lt_(n to oo) sum_(i=1)^(n) (i)/(n^(2)+i^(2))

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

Evaluate the limit . lim_(n to 00) sum_(i=1)^(n) (i^(3))/(i^(4)+n^(4))

Evaluate the limit . lim_(n to oo) (1)/(n) [tan (pi)/(4n) + tan (2pi)/(4n) +………..tan (npi)/(4n)]

The value of [lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))] is equal to -

Evaluate the following limits : Lim_(n to oo) (Sigman^(3))/(n^(4))

Evaluate the following limits : Lim_(n to oo) (1+2+3+...+n)/(n^(2)) ( or Lim_(x to oo) (Sigman)/(n^(2)))

Evaluate the following define integrals as limit of sums : lim_(n rarr oo) (1^(4)+2^(4) +3^(4) +....+n^(4))/(n^(5))