Home
Class 12
MATHS
For x>0, lim(x->0) (sinx)^(1/x) +(1/x)^s...

For `x>0, lim_(x->0) (sinx)^(1/x) +(1/x)^sinx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)|sinx|/x

For xgt0, lim_(xto0) {(sinx)^(1//x)+((1)/(x))^sinx} , is

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

For xgt0, lim_(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx} , is

For xgt0, lim_(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx} , is

lim_(x to 0) sinx^@/x = ?

lim_(xto0)(e^(sinx)-1)/x=