Home
Class 11
MATHS
Given an equilateral triangle ABC with s...

Given an equilateral triangle ABC with side length equal to 'a'. Let M and N be two points respectivelyАВIn the side AB and AC such that `vec(AN) = Kvec(AC) and vec(AM) = vec(AB)/3` If `vec(BN) and vec(CM)` are orthogonalthen the value of K is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If M is the midpoint of the side vec(BC) of a triangle ABC, prove that vec(AB)+vec(AC) = 2vec(AM)

If D is the midpoint of the side BC of a triangle ABC, prove that vec(AB)+vec(AC)=2vec(AD)

ABCD is a quadrilateral. If M and N are the mid points of the sides vec(BD) and vec(AC) , respectively. Show that vec(AB)+vec(AD)+vec(CB)+vec(CD)=4vec(NM)

In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB) equal to ?

If D and E, are the midpoints of the sides AB and AC of a triangle ABC, prove that vec(BE) +vec(DC)=(3)/(2)vec(BC).

ABCDEF is a regular hexagon with point O as centre. Find the value of vec(AB) + vec(AC) + vec(AD) + vec(AE) + vec(AF)

If D is the midpoint of the side AB of a triagle ABC prove that vec(BC)+vec(AC)=-2vec(CD)