Home
Class 12
MATHS
Find the limit, when n->oo,\ of\ [((n^...

Find the limit, when `n->oo,\ of\ [((n^3+1^3)(n^3+2^3)(n^3+3^3)........(n^3+n^3))/(n^(3n))]^(1/n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(n-oo)[(1)/(n^(3))+(2^(2))/(n^(3))+.........+(n^(2))/(n^(3))]=

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

Evaluate the following limits : Lt_(ntooo)(1^(3)+2^(3)+3^(3)+......+n^(3))/(n^(2)(n^(2)+1))

Evaluate lim_(n->oo)[1^2/(n^3+1^3) + 2^2/(n^3+2^3) +3^2/(n^3+3^3)+…+1/(2n)]

1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?