Home
Class 12
MATHS
Consider three vectors veca, vecb and ve...

Consider three vectors `veca, vecb and vecc`. Vectors `veca and vecb` are unit vectors having an angle `theta` between them For vector `veca,|veca|^2=veca.veca` If `veca_|_vecb and veca_|_vecc then veca||vecbxxvecc` If `veca||vecb, then veca=tvecb` Now answer the following question: If vecc` is as unit vector such that `veca.vecb=veca.vecc=0 and theta= (pi/6) then veca=` (A) `+-1/2(vecbxxvecc)` (B) `+-(vecbxxvecc)` (C) `+-2(vecbxxvecc)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: The value of sin(theta/2) is (A) 1/2 |veca-vecb| (B) 1/2|veca+vecb| (C) |veca-vecb| (D) |veca+vecb|

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: The value of sin(theta/2) is (A) 1/2 |veca-vecb| (B) 1/2|veca+vecb| (C) |veca-vecb| (D) |veca+vecb|

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca,|veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If |vecc|=4, theta cos^-1(1/4) and vecc-2vecb=tvecas, then t= (A) 3,-4 (B) -3,4 (C) 3,4 (D) -3,-4

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca,|veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If |vecc|=4, theta = cos^-1(1/4) and vecc=2vecb+tveca, then t= (A) 3,-4 (B) -3,4 (C) 3,4 (D) -3,-4

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If vecc is a unit vector and equal to the sum of veca and vecb the magnitude of difference between veca and vecb is (A) 1 (B) sqrt(2) (C) sqrt(3) (D) 1/sqrt(2)

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If vecc is a unit vector and equal to the sum of veca and vecb the magnitude of difference between veca and vecb is (A) 1 (B) sqrt(2) (C) sqrt(3) (D) 1/sqrt(2)

For the non-zero vectors veca, vecb and vecc, veca.(vecbxxvecc) = 0 if

If veca,vecb,vecc be unit vectors such that veca.vecb=veca.vecc=0 and the angle between vecb and vecc is pi//6 . Prove that veca=pm2(vecbxxvecc)

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: