Home
Class 12
MATHS
यदि lim(x rarr 2) (x^(n) - 2^(n))/(x-2)...

यदि `lim_(x rarr 2) (x^(n) - 2^(n))/(x-2)=80` हो, तो n का मान है -

Promotional Banner

Similar Questions

Explore conceptually related problems

find n in N, if lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(x rarr 1) (x+x^2+...+x^n-n)/(x-1)=

lim_ (x rarr a) (x ^ (n) -a ^ (n)) / (xa) = n * a ^ (n-1)

If lim_(x rarr 2) [(x^(n)-2^(n))/(x-2)]=32 , then find the value of n.

lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80 amd m in N, then find the value of n

यदि x^(2)+2=0 हो तो x का मान होगा-

lim_(x rarr oo) ((2n+1)(3n+2))/(n(n+9))=

If lim_(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n