Home
Class 11
MATHS
if argument of (z-1)/(z+1)=pi/4 then pro...

if argument of `(z-1)/(z+1)=pi/4` then prove that `x^2+y^2-2y=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=x+ iy such that the argument of (z-1)/(z+1) is always pi/4 . Prove that x^2 + y^2-2y=1

Show that the locus of z = x + iy such that the amplitude of (z -1)/(z+1) is equal to pi/4 . prove that x^2 + y^2 - 2y -1 =0

If z=x+iy such that the argument of (z-1)/(z+1) is always (pi)/(4). Prove that x^(2)+y^(2)-2y=1

cos^(-1)x+cos^(-1)y+cos^(-1)z=pi ,then prove that, x^2+y^2+z^2+xyz=1

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

IF sin^(-1) X+ sin^(-1) y+ sin^(-1) z= pi , then prove that x^4 +y^4+ z^4 +4x^2 y^2 z^2 = 2(x^2 y^2 +y^2 z^2+z^2x^2).

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1