Home
Class 12
MATHS
" र0."(y-b)^(2)=4k(x-a)...

" र0."(y-b)^(2)=4k(x-a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = 2x + k " touches " x^(2) + y^(2) - 4x - 2y = 0 , then k=

The circle x^(2)+y^(2)=4 cuts the circle x^(2)+y^(2)-2x-4=0 at the points A and B. If the circle x^(2)+y^(2)-4x-k=0 passes through A and B then the value of k , is

The circle x^(2)+y^(2)=4 cuts the circle x^(2)+y^(2)-2x-4=0 at the points A and B. If the circle x^(2)+y^(2)-4x-k=0 passes through A and B then the value of k , is

The mirror image of any point on the directrix of the parabola y^(2)=4(x+1) in the line mirror x+2y=3-0 lies on 3x-4y+4k=0, Then k=

If x^(2)+y^(2)=k^(2) , and xy=8-4k , what is (x+y)^(2) in terms of k ?

Suppose a,b epsilon R and |(x,a,b),(a,x,b),(b,b,x)|-4k(x-a)(x^(2)+ax-2b^(2))=0 then a value of k is ________

If the line 3x - 4y - k = 0 (k gt 0) touches the circle x^(2)+y^(2)-4x-8y-5 =0 at (a, b) then k + a + b is equal to :-

The locus of a point on the variable parabola y^2=4a x , whose distance from the focus is always equal to k , is equal to ( a is parameter) (a) 4x^2+y^2-4k x=0 (b) x^2+y^2-4k x=0 (c) 2x^2+4y^2-9k x=0 (d) 4x^2-y^2+4k x=0

The locus of a point on the variable parabola y^2=4a x , whose distance from the focus is always equal to k , is equal to ( a is parameter) (a) 4x^2+y^2-4k x=0 (b) x^2+y^2-4k x=0 (c) 2x^2+4y^2-9k x=0 (d) 4x^2-y^2+4k x=0

if the line 3x-4y-k=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 at (a,b), find (k+a+b)/5is