Home
Class 12
MATHS
x(dy)/(dx)-y=(x-1)e^(x)...

x(dy)/(dx)-y=(x-1)e^(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following differential equations. x(dy)/(dx)+y=(1+x)e^(x)

Solve (1)/(x)(dy)/(dx)+y.e^(x)=e^((1-x)e^(x))

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

The solution of (1)/(x)(dy)/(dx) + y e^(x) = e^((1-x)^(e^(x))) is

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

(x-y)(1-(dy)/(dx))=e^(x)

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))