Home
Class 12
MATHS
If x=sint,y=sinkt(k ne0, constant) then ...

If `x=sint,y=sinkt(k ne0`, constant) then show that `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+k^2y=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=sin^(-1)x , show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=sin^(-1)x , show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

y= sin ^(-1)x show that (1-x^2) (d^2 y)/(dx^2) -x (dy)/(dx) =0

If y=tan^(-1)x , show that (1+x^2)(d^2y)/(dx^2)+2x(dy)/(dx)=0 .

If y=sin^(-1)x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin^(-1) x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y = tan^(-1)x show that (1+x^2)(d^2y)/(dx^2) + 2x(dy)/(dx) = 0

If y = sin^-1x , then show that (1-x^2)(d^2y)/(dx^2)- x dy/dx = 0