Home
Class 9
MATHS
If A and B are complementary angles, the...

If A and B are complementary angles, then the value of `(sin^(2)A + sin^(2)B)/("cosec"^(2)A-tan^(2)B)` is ________

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are complementary angles, prove that : cosec^(2) A + cosec^(2) B = cosec^(2) A cosec^(2) B

If A and B are complementary angles, then i) cos^(2) A + cos^(2) B =1 ii) sin^(2) A + sin^(2) B =1

If A and B are complementary angles, then the value of sin A cos B + cos A sin B - tanA tan B + sec^(2) A - cot^2 B is

If A and B are complementary angles, find the value of sqrt((tanAtanB+cotAcotB)/(sinAsecB)-(sin^(2)B)/(cos^(2)A))

If A and B are acute angles and SecA = 3,CotB = 4, then the value of ("cosec"^(2)A + sin^(2)B)/(cot^(2)A + sec^(2)B) is:

If A and B are complementary angles,then sin A=sin B(b)cos A=cos B(c)tan A=tan B(d)sec A=cos ecB

Show that: tan(A+B).tan(A-B)=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B).

If tan x =a/b, then the value of (a^(2) + b^(2)) sin 2x is-

If A and B are complementary angles, prove that : (sin A + sin B)/ (sin A - sin B) + (cos B - cos A)/ (cos B + cos A) = (2)/(2 sin^(2) A - 1)