Home
Class 12
MATHS
q([[^(3),2^(2),3^(2)],[2t,3^(2),4^(2)],[...

q([[^(3),2^(2),3^(2)],[2t,3^(2),4^(2)],[3^(2),4^(2),5^(2)]|=-y

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide the given polynomial by the given monomial.( i (5x^(2)-6x)-:3x (ii) (3y^(8)-4y^(6)+5y^(4))-:y^(4)( iii) 8(x^(3)y^(2)z^(2)+x^(2)y^(3)z^(2)+x^(2)y^(2)z^(3))-:4x^(2)y^(2)z^(2)(iv)(x^(3)+2x^(2)+3x)-:2x(v)(p^(3)q^(6)-p^(6)q^(3))-:p^(3)q^(3)

If a^(*)b=a^(2)+b^(2), then the value of (4*5)*3 is a^(*)b=a^(2)+b^(2), then the value of (4*5)*3 is (4^(2)+5^(2))+3^(2)( ii )(4+5)^(2)+3^(2)41^(2)+3^(2)( iv) (4+5+3)^(2)

Simplify: ((3^(-2))^(2)xx(5^(2))^(-3)xx(t^(-3))^(2))/((3^(-2))^(5)xx(5^(3))^(-2)xx(t^(-4))^(3))

If the line px+gy=r intersects the ellipse x^(2)+4y^(2)=4 in points,whose eccentric angles differ by (pi)/(3), then r^(2) is equal to (A)(3)/(4)(4p^(2)+q^(2))(B)(4)/(3)(4p^(2)+q^(2))(C)(2)/(3)(4p^(2)+q^(2))(D)(3)/(4)(p^(2)+4q^(2))

If a circle intersects the parabola y^(2) = 4ax at points A(at_(1)^(2), 2at_(1)), B(at_(2)^(2), 2at_(2)), C(at_(3)^(2), 2at_(3)), D(at_(4)^(2), 2at_(4)), then t_(1) + t_(2) + t_(3) + t_(4) is

If a circle intersects the parabola y^(2) = 4ax at points A(at_(1)^(2), 2at_(1)), B(at_(2)^(2), 2at_(2)), C(at_(3)^(2), 2at_(3)), D(at_(4)^(2), 2at_(4)), then t_(1) + t_(2) + t_(3) + t_(4) is

Add the following algebraic expressions: 2,(2y)/(3)-(5y^(2))/(3)+(5y^(3))/(2),-(4)/(3)+(2y^(2))/(3)-(y)/(2),(5y^(3))/(3)+3y^(2)+3y+(6)/(5)

Divide: 3y^(4)-3y^(3)-4y^(2)-4y^(2)-4y-byy^(2)-2y2y^(5)+10y^(4)+6y^(3)+y^(2)+5y+3by2y^(3)+1x^(4)-2x^(3)+2x^(2)+x+4byx^(2)+x+1