Home
Class 11
MATHS
" Simplify "C(0)^(2)+(C(1)^(2))/(2)+(C(2...

" Simplify "C_(0)^(2)+(C_(1)^(2))/(2)+(C_(2)^(2))/(3)+...+(C_(n)^(2))/(n+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n) then the value of (C_(0))^(2)+((C_(1))^(2))/(2)+((C_(2))^(2))/(3)+...+((C_(n))^(2))/(n+1) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)^(2)+(C_(1)^(2))/(2)+(C_(2)^(2))/(3)+.....+(C_(n)^(2))/(n+1)=((2n+1)!)/({(n+1)!}^(2))

(C_(0))/(1*2)+(C_(1))/(2*3)+(C_(2))/(3*4)+...+(C_(n))/((n+1)(n+2))=

(C_(0))/(1.2)+(C_(1))/(2.3)+(C_(2))/(3.4)+......*(C_(n))/((n+1)(n+2))=

(C_(0))/(1)-(C_(1))/(2)+(C_(2))/(3)+.. . .+((-1)^(n))/(n+1). C_(n) =

(C_(0))^(2)+2(C_(1))^(2)+3(C_(2))^(2)+4(C_(3))^(2)...+(n+1)(c_(n))^(2)

C_(0)^(2)+1/2C_(1)^(2)+1/3C_(2)^(2)+….+1/(n+1)C_(n)^(2) equals

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+......+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)