Home
Class 11
MATHS
[" If "cos^(2)B-sin^(2)B=tan^(2)A," prov...

[" If "cos^(2)B-sin^(2)B=tan^(2)A," prove that : "],[2cos^(2)A-1=cos^(2)A-sin^(2)A=tan^(2)B]

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(2)A-sin^(2)A=tan^(2)B, prove that 2cos^(2)B-1=cos^(2)B-sin^(2)B=tan^(2)A

If cos^(2)A-sin^(2)A=tan^(2)B then prove that 2cos^(2)B-1=tan^(2)A

Prove that cos(A+B)cos(A-B)=cos^(2)A-sin^(2)B=cos^(2)B-sin^(2)A

If A=30^(@) , then prove that : cos2A=cos^(2)A-sin^(2)A " "=(1-tan^(2)A)/(1+tan^(2)A)

If A=30^(@) , then prove that : cos2A=cos^(2)A-sin^(2)A " "=(1-tan^(2)A)/(1+tan^(2)A)

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

Prove that (sin^(2)A)/(cos^(2)A)+1=(tan^(2)A)/(sin^(2)A)

Prove that : (cos ^(2) A + tan ^(2) A - 1 )/( sin ^(2) A ) = tan ^(2) A .

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1