Home
Class 11
MATHS
" 1."f(x)=|x-1|" a "quad " at "x=1...

" 1."f(x)=|x-1|" a "quad " at "x=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the continuity of the f(x) at the indicated points: f(x)=|x|||x-1| at x=0, 1 f(x)=|x-1|+|x+1| at x=-1,1

Discuss the continuity of the f(x) at the indicated points: f(x)=|x|||x-1| at x=0,1f(x)=|x-1|+|x+1| at x=-1,1

let ( f(x) = 1-|x| , |x| 1 ) g(x)=f(x+1)+f(x-1)

If f(x)=(x-1)/(x+1), then f(f(ax)) in terms of f(x) is equal to (a) (f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1))(c)(f(x)-1)/(a(f(x)+1))(d)(f(x)+1)/(a(f(x)+1))

If f(x)=1-x/(1+x) , x not equal to -1 then f{f(1/x)}= _____

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

Determine the constant lambda , so that the function is continuous at x=1 f(x) = {{:((x -1)/(x + 1)"," , " if " x != 1),(lambda - 1",", "if "x = 1):}

The distinct linear functions which map [-1, 1] onto [0, 2] are f(x)=x+1,\ \ g(x)=-x+1 (b) f(x)=x-1,\ \ g(x)=x+1 (c) f(x)=-x-1,\ \ g(x)=x-1 (d) none of these