Home
Class 10
MATHS
" (wi) "(x+2)^(3)=2x(x^(2)-1)...

" (wi) "(x+2)^(3)=2x(x^(2)-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Check whether the following are quadratic equation (i) (x+1)^2=2(x-3) (ii) x^2-2x=(-2)(3-x) (iii) (x-2)(x+1)=(x-1)(x+3) (iv) (x-3)(2x+1)=x(x+5) (v) (2x-1)(x-3)=(x+5)(x-1) (vi) x^2+3x+1=(x-2)^2 (vii) (x+2)^3=2x(x^2-1) (viii) x^3-4x^2 – x + 1 = (x – 2)^3

Check whether the following are quadratic equation (i) (x+1)^2=2(x-3) (ii) x^2-2x=(-2)(3-x) (iii) (x-2)(x+1)=(x-1)(x+3) (iv) (x-3)(2x+1)=x(x+5) (v) (2x-1)(x-3)=(x+5)(x-1) (vi) x^2+3x+1=(x-2)^2 (vii) (x+2)^3=2x(x^2-1) (viii) x^3-– 4x^2 – x + 1 = (x – 2)^3

Check whether the following are quadratic equations : (1) (x-2)^(2)+1=2x-3 (2) x(x+1)=8=(x+2)(x-2) (3) x(2x+3)=x^(2)+1 (4) (x+2)^(3) = x^(3)-4

Simplify: (x^(3)-2x^(2)+3x-4)(x-1)-(2x-3)(x^(2)-x+1)

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

A(x)=|(1,2,3),(x+1,2x+1,3x+1),(x^(2)+1,2x^(2)+1,3x^(2)+1)|impliesint_(0)^(1)A(x)dx=

A(x)=|{:(1,2,3),(x+1,2x+1,3x+1),(x^(2)+1,2x^(2)+1,3x^(2)+1):}|rArrint_(0)^(1)A(x)dx=

A(x)=|(1,2,3),(x+1,2x+1,3x+1),(x^(2)+1,2x^(2)+1,3x^(2)+1)|impliesint_(0)^(1)A(x)dx=

(i) (2x+3) (3x-5) (ii) x(1+x)^(3) (iii) (sqrtx + 1/x) (x -1/sqrtx) (iv) (x-1/x)^(2) (v) (x^(2) + 1/x^(2))^(3) (vi) (2x^(2) +5x-1) (x-3)