Home
Class 11
MATHS
" If "y=log(log x)," then "(d^(2)y)/(dx^...

" If "y=log(log x)," then "(d^(2)y)/(dx^(2))" is aqual to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = log (log x), then (d^(2)y)/(dx^(2)) is equal to

If y = log (log x) then (d^(2)y)/(dx^(2)) is equal to

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y=log(sinx)," then "(d^(2)y)/(dx^(2)) equals

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=log(secx) , then (d^(2)y)/(dx^(2)) is :

If y=log (log x) then (d^2y)/(dx^2) is equal to

If y=log (log x) then (d^2y)/(dx^2) is equal to

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =