Home
Class 12
MATHS
The period of the function f(x)=c^sin^2x...

The period of the function `f(x)=c^sin^2x+sin^(2(x+pi/3)+cosxcos(x+pi/3))` is (where `c` is constant) 1 (b) `pi/2` (c) `pi` (d) cannot be determined

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of the function f(x)=c^(sin^2x+(sin(x+pi/3))^2+cosxcos(x+pi/3)) is (where c is constant) 1 (b) pi/2 (c) pi (d) cannot be determined

The period of the function f(x)=c^(sin^(2)x +sin^(2)(x+ pi/3) + cos x cos(x + pi/3)) is ( where c is constant)

The period of the function f(x)=c^(sin^(2)x+sin^(2)(x+(pi)/(3))+cos x cos(x+(pi)/(3))) is (where c is constant 1 (b) (pi)/(2)(c)pi(d) cannot be determined

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The period of the function f(x)=sin((2x+3)/(6pi)) , is

Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2) .

Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2) .

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of the function f(x)=cos2pi{2x}-sin2 pi {2x} , is ( where {x} denotes the functional part of x)