Home
Class 12
MATHS
If sin^(-1)x + tan ^(-1) x = (pi)/(2), t...

If `sin^(-1)x + tan ^(-1) x = (pi)/(2)`, then prove that
`2x^(2) + 1 = sqrt(5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+tan^(-1)x=(pi)/(2) , prove that : 2x^(2)+1=sqrt(5)

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

If tan^(-1)((a+x)/(a) )+ tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^2

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-y^2) + y sqrt(1-x^2) =1 .

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi, Prove x sqrt (1-x ^ (2)) + y sqrt (1-y ^ (2) ) + z sqrt (1-z ^ (2)) = 2xyz