Home
Class 12
MATHS
Let [x] represent the greatest integer l...

Let [x] represent the greatest integer less than or equal to `x` If [`sqrt(n^2+lambda)]=[sqrt(n^2+1)]+2` , where `lambda,n in N ,` then `lambda` can assume (a) `2n+4` different values (b)` 2n+5` different values (c)`2n+3` different values (d)`2n+6` different values

Promotional Banner

Similar Questions

Explore conceptually related problems

Let [x] represent the greatest integer less than or equal to x If [ sqrt(n^2+lambda)]=[n^2+1]+2 , where lambda,n in N , then lambda can assume (a) (2n+4) different values (b) (2n+5) different values (c) (2n+3) different values (d) (2n+6) different values

If (sqrt(2n^(2)+n)-lambda sqrt(2n^(2)-n))=(1)/(sqrt(2))( where lambda is real number),then

int_(2)^(4) (3x^(2)+1)/((x^(2)-1)^(3))dx = (lambda)/(n^(2)) where lambda, n in N and gcd(lambda,n) = 1 , then find the value of lambda + n

If the period of the function f(x)= sin (sqrt([n])x) where [n] denotes the greatest integer less than or equal to n is 2pi , then

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

Let n in N and [x] denote the greatest integer less than or equal to x. If the sum of (n + 1) terms ""^(n) C_(0) , 3 .""^(n)C_(1) , 5. :""^(n) C_(2) , & .""^(n)C_(3) is equal to 2 ^(100) . 101 then 2 [(n-1)/(2)] is equal to _________