Home
Class 12
MATHS
Consider the function y =f(x) satisfyin...

Consider the function `y =f(x)` satisfying the condition `f(x+1/x)=x^2+1/(x^2)(x!=0)`. Then the

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function y=f(x) satisfying the condition f(x+1/x)=x^2+1//x^2(x!=0)dot Then the (a) domain of f(x)i sR (b)domain of f(x)i sR-(-2,2) (c)range of f(x)i s[-2,oo] (d)range of f(x)i s(2,oo)

Consider the function y=f(x) satisfying the condition f(x+1/x)=x^2+1//x^2(x!=0)dot Then the a)domain of f(x)i sR b)domain of f(x)i sR-(-2,2) c)range of f(x)i s[-2,oo] d)range of f(x)i s(2,oo)

Consider the function y = f(x) satisfying the condition f(x+ 1/x)=x^(2) + (1)/(x^(2))( != 0) . Then the

The function y=f(x) satisfying the condition f(x+1//x) =x^(3)+1//x^(3) is:

The function y=f(x) satisfying the condition f(x+(1)/(x))=x^(3)+(1)/(x^(3)) is

Ify=f(x) satisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0) then f(x)=

A function y = f(x) satisfies the condition f(x+(1)/x) =x^(2)+1/(x^2)(x ne 0) then f(x) = ........

If the function f(x) satisfies the condition f(x + 1/x) = x^2 + 1/x^2,x ne 0 then f(x) is

If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0 , then domain of f(x) is