Home
Class 12
MATHS
Let tt=r! and Sn=sum(r=1)^n r ! , n >4, ...

Let `t_t=r! and S_n=sum_(r=1)^n r ! , n >4, n in N` then `(S_n)/24=K+lambda/24 , K ,lambda in N` then `lambda` can be is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let t_(r)=r! and S_(n)=sum_(r=1)^(n)t_(r), (n>10) then remainder when S_(n) is divided by 24 is:

If t_n=sum_1^n n , find S_n=sum_1^n t_n .

If S_n=sum_(r=0)^n 1/(nC_r) and t_n=sum_(r=0)^n r/(nC_r), then t_n/S_n=

sum mation (n ^ (2)) = lambda sum mation (n) and M = (9 lambda ^ (2) -4n ^ (2)) / (6 lambda + 4n)

If A is a skew-symmetric and n in N such that (A^n)^T=lambda\ A^n , write the value of lambda

Let S_n=sum_(r=0)^oo 1/n^r and sum_(n=1)^k (n-1)S_n = 5050 then k= (A) 50 (B) 505 (C) 100 (D) 55

Let S_n=sum_(r=0)^oo 1/n^r and sum_(n=1)^k (n-1)S_n = 5050 then k= (A) 50 (B) 505 (C) 100 (D) 55