Home
Class 11
MATHS
[" If "A^(2)=2A-I" then for "n!=2,A''=],...

[" If "A^(2)=2A-I" then for "n!=2,A''=],[[" 1) "nA-(n-1)I," 2) "nA-I," 3) "2^(n-1)A-(n-1)L," 4) "2^(" in "-1)" [Eaucer "92" ] "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(2)=2A-I then for n!=2,A^(n)=

If A^(2)=2A-I then for n>=2,A^(n)=

Matrix A such that A^(2) = 2A - I , where I is the identity matrix, then for n ge 2, A^(n) is equal to a) 2^(n - 1) A - (n - 1) I b) 2^(n - 1)A - I c) n A - (n - 1) I d) nA - I

(I n (3)) (I n) = (I n (2)) ^ (2)

(1+i)^(2 n)+(1-i)^(2 n), n in z is

If z=-2 + 2 sqrt3i then z^(2n) + z^(n) + 2^(4n) may be equal to

If n in Z , then (2^(n))/(1+i)^(2n)+(1+i)^(2n)/(2^(n)) is equal to

If I_(n) = int_((pi)/(6)) "cosec"^(n) x dx , show that (n-1)I_(n) = 2^(n-2) sqrt(3)+(n-2)I_(n-2)