Home
Class 12
MATHS
In a triangleABC, a^(2) sin 2C+c^(2) sin...

In a `triangleABC, a^(2) sin 2C+c^(2) sin 2A=`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangleABC, a^(2) sin2C + c^(2) sin2A=

In triangleABC, a^(2) sin2C + c^(2) sin2A=

In triangleABC, a^(2)sin(B-C)=

In Delta ABC,a^2 sin 2C+c^2 sin 2A=

In any triangle ABC,sin^(2)A-sin^(2)B+sin^(2)C is always equal to (A) 2sin A sin B cos C(B)2sin A cos B sin C(C)2sin A cos B cos C(D)2sin A sin B sin C

Show that in a triangle ABC, a^2(sin^2B-sin^2C)+b^2(sin^2C-sin^2A)+c^2(sin^2A-sin^2B)=0

In a triangleABC, 2ac.sin((A-B+C)/2)=

In triangleABC,sin((B+C)/2) =

In triangleABC, sin((B-C)/(2))=