Home
Class 11
MATHS
[" If "sec theta+tan theta=1," then one ...

[" If "sec theta+tan theta=1," then one root "],[" of equation,a "(b-c)x^(2)+b(c-a)x+],[c(a-b)=0" is : "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sectheta+tantheta=1 then one root of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 is

If sec theta + tan theta=1 , then root of the equation (a-2b+c)x^(2) + (b-2c+a)x + (c-2a+b)=0 is:

If sec theta+tan theta=1, then one root of the eqection a(b-c)x^(2)+b(c-a)x+c(a-b)=0 is (A) tan theta(B)sec theta(C)cos theta(D)sin theta

If sec theta+tan theta=1, then root of the equation (a-2b+c)x^(2)+(b-2c+a)x+(c-2a+b)=0 is :

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

if one of the root of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 is 1,the other root is

If one of the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 is 1, the other root is

If one of the roots of the equation (b-c)x^(2) + b(c-a)x + c( a-b) = 0 is 1, what is the second root ?