Home
Class 11
MATHS
Prove that sum(r=0)^n(-1)^r^n Cr[1/(2^r...

Prove that `sum_(r=0)^n(-1)^r^n C_r[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ u ptomt e r m s]=(2^(m n)-1)/(2^(m n)(2^n-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^n(-1)^r .^n C_r[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ .....mt e r m s]= (2^(m n)-1)/(2^(m n)(2^n-1))

Prove that sum_(r=0)^(n)(-1)^(r)nC_(r)[(1)/(2^(r))+(3)/(2^(2r))+(7)/(2^(3r))+(15)/(2^(4r))+...up to mterms]=(2^(mn)-1)/(2^(mn)(2^(n)-1))

prove that sum_(r=0)^n(-1)^r^n C_r . [ 1/(2^r)+(3^r)/(2^(2r))+(7^r)/(2^(3r))+(15^r)/(2^(4r))+ ......up to m terms ] = (2^(m n)-1)/(2^(m n)(2^n-1))

Show that sum_(r=0)^(n) (-1)^(r ). ""^(n)C_(r ) {(1)/(2^(r )) +(3^(r ))/(2^(2r)) +(7^(r ))/(2^(3r)) +…."upto m terms"}=(2^(mn)-1)/(2^(mn)(2^(n)-1))

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((n C_r)/((r+3)C_3))

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r = 0)^n r^3 . C_r = n^2 (n +3).2^(n-3)