Home
Class 11
MATHS
Evaluate the following (i) i^(9) (ii...

Evaluate the following
(i) `i^(9)`
(ii) `i^(342)`
(iii) `i^(998)`
(iv) `i^(-63)`
(v) `(i^(3)+(1)/(i^(3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the given expressions involving the imaginary unit \( i \) (where \( i = \sqrt{-1} \)), we can use the cyclical nature of powers of \( i \). The powers of \( i \) cycle every four terms as follows: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - \( i^5 = i \) (and so on) Using this pattern, we can evaluate each part step by step. ### Part (i): Evaluate \( i^9 \) 1. **Find the remainder when 9 is divided by 4**: \[ 9 \div 4 = 2 \quad \text{(remainder 1)} \] 2. **Use the cyclical pattern**: \[ i^9 = i^{4 \cdot 2 + 1} = (i^4)^2 \cdot i^1 = 1^2 \cdot i = i \] **Answer**: \( i^9 = i \) --- ### Part (ii): Evaluate \( i^{342} \) 1. **Find the remainder when 342 is divided by 4**: \[ 342 \div 4 = 85 \quad \text{(remainder 2)} \] 2. **Use the cyclical pattern**: \[ i^{342} = i^{4 \cdot 85 + 2} = (i^4)^{85} \cdot i^2 = 1^{85} \cdot (-1) = -1 \] **Answer**: \( i^{342} = -1 \) --- ### Part (iii): Evaluate \( i^{998} \) 1. **Find the remainder when 998 is divided by 4**: \[ 998 \div 4 = 249 \quad \text{(remainder 2)} \] 2. **Use the cyclical pattern**: \[ i^{998} = i^{4 \cdot 249 + 2} = (i^4)^{249} \cdot i^2 = 1^{249} \cdot (-1) = -1 \] **Answer**: \( i^{998} = -1 \) --- ### Part (iv): Evaluate \( i^{-63} \) 1. **Convert to positive exponent**: \[ i^{-63} = \frac{1}{i^{63}} \] 2. **Find the remainder when 63 is divided by 4**: \[ 63 \div 4 = 15 \quad \text{(remainder 3)} \] 3. **Use the cyclical pattern**: \[ i^{63} = i^{4 \cdot 15 + 3} = (i^4)^{15} \cdot i^3 = 1^{15} \cdot (-i) = -i \] 4. **Substitute back**: \[ i^{-63} = \frac{1}{-i} = -\frac{1}{i} \cdot \frac{i}{i} = -\frac{i}{-1} = i \] **Answer**: \( i^{-63} = i \) --- ### Part (v): Evaluate \( i^3 + \frac{1}{i^3} \) 1. **Calculate \( i^3 \)**: \[ i^3 = -i \] 2. **Calculate \( \frac{1}{i^3} \)**: \[ \frac{1}{i^3} = \frac{1}{-i} = -\frac{1}{i} \cdot \frac{i}{i} = -\frac{i}{-1} = i \] 3. **Combine the results**: \[ i^3 + \frac{1}{i^3} = -i + i = 0 \] **Answer**: \( i^3 + \frac{1}{i^3} = 0 \) --- ### Summary of Answers: 1. \( i^9 = i \) 2. \( i^{342} = -1 \) 3. \( i^{998} = -1 \) 4. \( i^{-63} = i \) 5. \( i^3 + \frac{1}{i^3} = 0 \) ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (a)|7 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (b)|9 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : (i) i^(7) (ii) i^(51) (iii) (1)/(i) (iv) i^(-71) (v) (i^(37)+(1)/(i^(67)))

Simplify the following : (i) i^(97) (ii) i^(8) (iii) (1)/(i^(3)) (iv) (-i)^(14) (v) i^(-22) (vi) i^(-63)

Find the values of the following : (i) i^(73) (ii) i^(-6) (iii) (1)/(i)

Find the values of the following : (i) i^(7)+i^(17)+i^(12) (ii) i^(11)+i^(-11) (iii) i^(3)+(1)/(i^(3)) (iv) 1+i^(2)+i^(6)+i^(8)

Evaluate : (i) i^(23)" "(ii) i^(998)" "(iii)i^(-998)" "(iv) i^(-71) (v) (sqrt(-1))^(91)" "(vi) (i^(37)xx i^(-61))" "(vii) i^(-1)

Write the following in the form x+iy: (i) (2i)^(3) (ii) i^(-35) (iii) (-i)(2i)(-(1)/(8)i)^(3) .

Evaluate: " "(i)" "i^(19)" "(ii)" "i^(62)" "(iii)" "i^(373)

Find : ( i ) (ii) (ii) (iii) (iii) (iv)

Simplify the following : (i) [i^(19) +(1)/(i^(25))]^(2) (ii) [i^(5)- (1)/(i^(3))]^(4)