Home
Class 11
MATHS
Prove that: (i) 1+i^(10)+i^(100)-i^(10...

Prove that:
(i) `1+i^(10)+i^(100)-i^(1000)=0`
(ii) `i^(107)+i^(112)+i^(117)+i^(122)=0`
(iii) `(1+i^(14)+i^(18)+i^(22))` is real number.

Text Solution

Verified by Experts

The correct Answer is:
(i) `1+(1)^(2)xx(-1)+(1)^(25)-(1)^(250)`
(ii) 0
(iii) `-2`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (a)|7 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (b)|9 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

1+i^(10)+i^(110)+i^(1000)

i^(107)+i^(220)+i^(241)+i^(362)=

Show that i^(15)+i^(17)+i^(19)+i^(21)+i^(24) is a real number.

Show that 1+i^(10)+i^(20)+i^(30) is a real number.

Prove that: (i) 1+i^(2)+i^(4)+i^(6)=0 (ii) 1+i^(10)+i^(100)+i^(1000)=2 (iii) i^(104)+i^(109)+i^(114)+i^(119)=0 (iv) 6i^(54)+5i^(37)-2i^(11)+6i^(68)=7i (v) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))=-1

Simplify the following : (i) 1+ i^(5)+i^(10)+i^(15) (ii) (1+i)^(4)+(1+(1)/(i))^(4) (iii) i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n inN

Prove that (3+i)/(1+2i)+(3-i)/(1-2i) is a real number.

Prove that: (i) (1-i)^(2)=-2i (ii) (1+i)^(4)xx(1+(1)/(i))^(4)=16 (iii) {i^(19)+((1)/(i))^(25)}^(2)=-4 (iv) i^(4n)+i^(4n+1)+i^(4n+2)+i^(4n+3)=0 (v) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)=1+4i .

Evaluate: " "(i)" "i^(-50)" "(ii)" "i^(-9)" "(iii)" "i^(-131)