Home
Class 11
MATHS
Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)...

Prove that `i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0` for all `n inN`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( i^n + i^{n+1} + i^{n+2} + i^{n+3} = 0 \) for all \( n \in \mathbb{N} \), we will follow these steps: ### Step 1: Write the expression We start with the expression: \[ i^n + i^{n+1} + i^{n+2} + i^{n+3} \] ### Step 2: Factor out \( i^n \) We can factor \( i^n \) out of the expression: \[ i^n (1 + i + i^2 + i^3) \] ### Step 3: Calculate the powers of \( i \) Now, we need to evaluate \( 1 + i + i^2 + i^3 \): - \( i^0 = 1 \) - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) ### Step 4: Substitute the values Substituting these values into the expression, we get: \[ 1 + i - 1 - i \] ### Step 5: Simplify the expression Now, simplify the expression: \[ 1 - 1 + i - i = 0 \] ### Step 6: Final expression Thus, we have: \[ i^n (1 + i + i^2 + i^3) = i^n \cdot 0 = 0 \] ### Conclusion Therefore, we conclude that: \[ i^n + i^{n+1} + i^{n+2} + i^{n+3} = 0 \] for all \( n \in \mathbb{N} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (a)|7 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (b)|9 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) for all n in N.

Show that: {i^(19)+((1)/(i))^(25)}^(2)=-4( ii) {i^(17)-((1)/(i))^(34)}^(2)=2i (iii) {i^(18)+((1)/(i))^(24)}^(3)=0 (iv) i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n in N.

Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Prove that : I_(n)^(-1)=I_(n)

For any positive integer n, prove that: i^(n)+i^(n+1)+i^(n+2)+i^(n+3)+i^(n+4)+i^(n+5)+i^(n+6)+i^(n+7)=0 .

Prove that : adj. I_(n)=I_(n)

Prove that ((sqrt3+i)/(sqrt3-i)) ^(3n) +1=0 for all odd integral values of n.