Home
Class 11
MATHS
Find the modulus of the complex number: ...

Find the modulus of the complex number:
`(1)/(2-3i)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the complex number \( z = \frac{1}{2 - 3i} \), we will follow these steps: ### Step 1: Write the modulus property We know that the modulus of a quotient of complex numbers can be expressed as: \[ |z| = \left| \frac{1}{2 - 3i} \right| = \frac{|1|}{|2 - 3i|} \] ### Step 2: Calculate the modulus of the numerator The modulus of the numerator \( |1| \) is: \[ |1| = 1 \] ### Step 3: Calculate the modulus of the denominator Next, we need to calculate the modulus of the denominator \( |2 - 3i| \). The modulus of a complex number \( a + bi \) is given by: \[ |a + bi| = \sqrt{a^2 + b^2} \] For our case, \( a = 2 \) and \( b = -3 \): \[ |2 - 3i| = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \] ### Step 4: Substitute back into the modulus formula Now we substitute back into our modulus formula: \[ |z| = \frac{|1|}{|2 - 3i|} = \frac{1}{\sqrt{13}} \] ### Step 5: Final result Thus, the modulus of the complex number \( \frac{1}{2 - 3i} \) is: \[ |z| = \frac{1}{\sqrt{13}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (a)|7 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (b)|9 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Find the modulus of the complex number ((i)/(1-i))

Find the modulus of complex number -3-4i

The modulus of the complex number (1)/(2-3i) is. . . .

What is the modulus of the complex number i^(2n+1) (-i)^(2n-1) , where n in N and i=sqrt(-1) ?

Find the modulus of Complex numbe (2-3i)^(2)

Find the modulus and argument of the complex number (1+2i)/(1-3i)

Find the modulus and of the amplitude of the complex numbers: (1+i)/(1-i)

Modulus of complex number 3i-4 is:

Find the modulus of the following complex number ( 3+ 4i) ( 1+ 5i)

Find the modulus and argument of the complex number -2+2sqrt3i