Home
Class 11
MATHS
if z(1)=3+4i and z(2)=12-5i, verify: (...

if `z_(1)=3+4i and z_(2)=12-5i`, verify:
(i) `|-z_(1)|=|z_(1)|`
(ii) `|z_(1)+z_(2)|lt|z_(1)|+|z_(2)|`
(iii) ` |z_(1)z_(2)|=|z_(1)||z_(2)|`.

Text Solution

AI Generated Solution

The correct Answer is:
To verify the given statements about the complex numbers \( z_1 = 3 + 4i \) and \( z_2 = 12 - 5i \), we will go through each part step by step. ### Part (i): Verify \( |-z_1| = |z_1| \) 1. **Calculate \( |z_1| \)**: \[ |z_1| = |3 + 4i| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 2. **Calculate \( |-z_1| \)**: \[ |-z_1| = |- (3 + 4i)| = |-3 - 4i| = \sqrt{(-3)^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 3. **Conclusion**: \[ |-z_1| = |z_1| \implies 5 = 5 \] Thus, the statement is verified. ### Part (ii): Verify \( |z_1 + z_2| < |z_1| + |z_2| \) 1. **Calculate \( z_1 + z_2 \)**: \[ z_1 + z_2 = (3 + 4i) + (12 - 5i) = 3 + 12 + (4 - 5)i = 15 - i \] 2. **Calculate \( |z_1 + z_2| \)**: \[ |z_1 + z_2| = |15 - i| = \sqrt{15^2 + (-1)^2} = \sqrt{225 + 1} = \sqrt{226} \] 3. **Calculate \( |z_2| \)**: \[ |z_2| = |12 - 5i| = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \] 4. **Calculate \( |z_1| + |z_2| \)**: \[ |z_1| + |z_2| = 5 + 13 = 18 \] 5. **Compare \( |z_1 + z_2| \) and \( |z_1| + |z_2| \)**: \[ \sqrt{226} \approx 15.1 < 18 \] Thus, \( |z_1 + z_2| < |z_1| + |z_2| \) is verified. ### Part (iii): Verify \( |z_1 z_2| = |z_1| |z_2| \) 1. **Calculate \( z_1 z_2 \)**: \[ z_1 z_2 = (3 + 4i)(12 - 5i) = 3 \cdot 12 + 3 \cdot (-5i) + 4i \cdot 12 + 4i \cdot (-5i) \] \[ = 36 - 15i + 48i - 20i^2 \] Since \( i^2 = -1 \): \[ = 36 - 15i + 48i + 20 = 56 + 33i \] 2. **Calculate \( |z_1 z_2| \)**: \[ |z_1 z_2| = |56 + 33i| = \sqrt{56^2 + 33^2} = \sqrt{3136 + 1089} = \sqrt{4225} = 65 \] 3. **Calculate \( |z_1| |z_2| \)**: \[ |z_1| |z_2| = 5 \cdot 13 = 65 \] 4. **Conclusion**: \[ |z_1 z_2| = |z_1| |z_2| \implies 65 = 65 \] Thus, the statement is verified. ### Summary of Results - Part (i): \( |-z_1| = |z_1| \) is verified. - Part (ii): \( |z_1 + z_2| < |z_1| + |z_2| \) is verified. - Part (iii): \( |z_1 z_2| = |z_1| |z_2| \) is verified.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (a)|7 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (b)|9 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

If z_(1) =3 -4i and z_(2) = 5 + 7i ,verify (i) |-z_(1)| =|z_(1)| (ii) |z_(1) +z_(2)| lt |z_(2)|

If z_(1)=5-7i and z_(2)=7-9i , verify: (i) |-z_(1)|=|z_(1)| (ii) |z_(1)z_(2)|=|z_(1)||z_(2)|

If z_(1)=5+2i and z_(2)=2 +i ,verify (i) |z_(1)z_(2)|= |z_(1)||z_(2)|

Let z_(1)=2-3i and z_(2)=5+12i , verify that: (i) |z_(1)+z_(2)|lt|z_(1)|+|z_(2)| (ii) |z_(2)-z_(1)|gt|z_(2)|-|z_(1)|

If z_(1) = 4 -I and z_(2) = - 3 + 7i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2)

If Z_(1)=2 + 3i and z_(2) = -1 + 2i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2) (iii) z_(1).z_(2) (iv) z_(1)/z_(2)

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

If Z_(1)=1+i and Z_(2)=2+2i , then which of the following is not true. (A) |z_(1)z_(2)|=|z_(1)||z_(2)| (B) |z_(1)+z_(2)|=|z_(1)|+|z_(2)| (C) |z_(1)-z_(2)|=|z_(1)|-|z_(2)| (D) |(z_(1))/(z_(2))|=(|z_(1)|)/(|z_(2)|)

if z_(1) =2+3i and z_(2) = 1+i then find, |z_(1)+z_(2)|

If z_(1)=-3i,z_(2)=3+4i and z_(3)=2-3i , verify that z_(1)(z_(2)+z_(3))=z_(1)z_(2)+z_(1)z_(3) .