Home
Class 11
MATHS
Convert the following in the polar form:...

Convert the following in the polar form:
`(1+7i)/((2-i)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To convert the expression \((1 + 7i) / ((2 - i)^2)\) into polar form, we will follow these steps: ### Step 1: Simplify the denominator First, we need to calculate \((2 - i)^2\). \[ (2 - i)^2 = 2^2 - 2 \cdot 2 \cdot i + i^2 = 4 - 4i + (-1) = 3 - 4i \] ### Step 2: Rewrite the expression Now we can rewrite the original expression: \[ \frac{1 + 7i}{3 - 4i} \] ### Step 3: Multiply by the conjugate of the denominator To simplify the fraction, we multiply the numerator and the denominator by the conjugate of the denominator, which is \(3 + 4i\): \[ \frac{(1 + 7i)(3 + 4i)}{(3 - 4i)(3 + 4i)} \] ### Step 4: Simplify the denominator Calculating the denominator: \[ (3 - 4i)(3 + 4i) = 3^2 - (4i)^2 = 9 - 16(-1) = 9 + 16 = 25 \] ### Step 5: Simplify the numerator Now, we calculate the numerator: \[ (1 + 7i)(3 + 4i) = 1 \cdot 3 + 1 \cdot 4i + 7i \cdot 3 + 7i \cdot 4i = 3 + 4i + 21i + 28i^2 \] \[ = 3 + 25i + 28(-1) = 3 + 25i - 28 = -25 + 25i \] ### Step 6: Combine the results Now we can combine the results: \[ \frac{-25 + 25i}{25} = -1 + i \] ### Step 7: Convert to polar form To convert \(-1 + i\) into polar form, we need to find the modulus \(r\) and the argument \(\theta\). #### Finding the modulus \(r\): \[ r = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2} \] #### Finding the argument \(\theta\): The argument \(\theta\) can be found using: \[ \tan(\theta) = \frac{\text{Imaginary part}}{\text{Real part}} = \frac{1}{-1} = -1 \] This indicates that the angle is in the second quadrant. The reference angle where \(\tan(\theta) = 1\) is \(\frac{\pi}{4}\), thus: \[ \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \] ### Final Polar Form Now we can write the polar form: \[ \text{Polar form} = r(\cos \theta + i \sin \theta) = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right) \] ### Summary The polar form of \(\frac{1 + 7i}{(2 - i)^2}\) is: \[ \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (a)|7 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (b)|9 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Convert the following in the polar form : ( i ) (1+7i)/((2-i)^(2)) (ii) (1+3i)/(1-2i)

Convert the following in polar form: (1+3i)/(1-2i)

Convert the following in polar form, (iii) i(1+i)

Convert the following in polar form, (iv) (5-i)/(2-3i)

Put the following numbers in the polar form: i

Put the following numbers in the polar form: ((2+i)/(3-i))^2

Put the following numbers in the polar form: -1+i

Convert the following into polar form : (i) -1+isqrt(3) (ii) 1-i (iii) 1-(1)/(i) (iv) 3-4i (v) sin120^(@)-icos120^(@) (vi) 2

Find the polar form of -2-i

Convert the following in polar form, (i) -3sqrt2+3sqrt2i