Home
Class 11
MATHS
Express sin50^(@)+icos50^(@) in the pola...

Express `sin50^(@)+icos50^(@)` in the polar form. Also, find r and `theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To express \( \sin 50^\circ + i \cos 50^\circ \) in polar form, we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sin 50^\circ + i \cos 50^\circ \] We want to express this in the form \( r (\cos \theta + i \sin \theta) \). ### Step 2: Use trigonometric identities We can use the identity \( \sin(90^\circ - \theta) = \cos \theta \) and \( \cos(90^\circ - \theta) = \sin \theta \). Thus, we can rewrite \( \sin 50^\circ \) and \( \cos 50^\circ \) as: \[ \sin 50^\circ = \cos(90^\circ - 50^\circ) = \cos 40^\circ \] \[ \cos 50^\circ = \sin(90^\circ - 50^\circ) = \sin 40^\circ \] ### Step 3: Substitute back into the expression Now substituting these identities back into our expression, we have: \[ \sin 50^\circ + i \cos 50^\circ = \cos 40^\circ + i \sin 40^\circ \] ### Step 4: Identify the polar form The expression \( \cos 40^\circ + i \sin 40^\circ \) can be expressed in polar form as: \[ r (\cos \theta + i \sin \theta) \] where \( r = 1 \) and \( \theta = 40^\circ \). ### Step 5: Conclusion Thus, the polar form of \( \sin 50^\circ + i \cos 50^\circ \) is: \[ 1 (\cos 40^\circ + i \sin 40^\circ) \] where \( r = 1 \) and \( \theta = 40^\circ \). ### Summary of Results - Polar Form: \( 1 (\cos 40^\circ + i \sin 40^\circ) \) - \( r = 1 \) - \( \theta = 40^\circ \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (a)|7 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (b)|9 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Express sin30^(@)+i cos30^(0) in polar form

The polar form of sin theta-i cos theta is

write the polar form of 1-cos theta+i sin theta

sin(50^(@)+theta)-cos(40^(@)-theta)

4sin50^(@)-sqrt(3)tan50^(@)

(i) sin10^(@)sin50^(@)sin70^(@)

The polar form of sin50^(@)+icos50^(@) is . . .

Express in polar form (1+i)

Express sin5 theta in terms of sin theta