Home
Class 11
MATHS
Simplify: sqrt((-x)/(16))+sqrt((-x)/(25)...

Simplify: `sqrt((-x)/(16))+sqrt((-x)/(25))-sqrt((-x)/(36))`, where 'x' is a positive real number.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{\frac{-x}{16}} + \sqrt{\frac{-x}{25}} - \sqrt{\frac{-x}{36}} \), where \( x \) is a positive real number, we can follow these steps: ### Step 1: Rewrite the square roots Since \( x \) is positive, we can express the square roots of negative numbers using the imaginary unit \( i \) (where \( i = \sqrt{-1} \)). Therefore, we can rewrite each term as follows: \[ \sqrt{\frac{-x}{16}} = \sqrt{-1} \cdot \sqrt{\frac{x}{16}} = i \cdot \frac{\sqrt{x}}{4} \] \[ \sqrt{\frac{-x}{25}} = \sqrt{-1} \cdot \sqrt{\frac{x}{25}} = i \cdot \frac{\sqrt{x}}{5} \] \[ \sqrt{\frac{-x}{36}} = \sqrt{-1} \cdot \sqrt{\frac{x}{36}} = i \cdot \frac{\sqrt{x}}{6} \] ### Step 2: Substitute back into the expression Now substitute these rewritten terms back into the original expression: \[ i \cdot \frac{\sqrt{x}}{4} + i \cdot \frac{\sqrt{x}}{5} - i \cdot \frac{\sqrt{x}}{6} \] ### Step 3: Factor out the common term We can factor out \( i \sqrt{x} \) from the expression: \[ i \sqrt{x} \left( \frac{1}{4} + \frac{1}{5} - \frac{1}{6} \right) \] ### Step 4: Simplify the expression inside the parentheses To simplify \( \frac{1}{4} + \frac{1}{5} - \frac{1}{6} \), we need a common denominator. The least common multiple of 4, 5, and 6 is 60. Convert each fraction: \[ \frac{1}{4} = \frac{15}{60}, \quad \frac{1}{5} = \frac{12}{60}, \quad \frac{1}{6} = \frac{10}{60} \] Now substitute these back into the expression: \[ \frac{15}{60} + \frac{12}{60} - \frac{10}{60} = \frac{15 + 12 - 10}{60} = \frac{17}{60} \] ### Step 5: Combine everything Now we can substitute this back into our expression: \[ i \sqrt{x} \cdot \frac{17}{60} = \frac{17 i \sqrt{x}}{60} \] ### Final Answer Thus, the simplified expression is: \[ \frac{17 i \sqrt{x}}{60} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (b)|9 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (c)|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Simplify sqrt(-16)xxsqrt(-25) .

Simplify :(sqrt((225)/(729))-sqrt((25)/(144)))+sqrt((16)/(81))

Simplify : 3sqrt(-16)-2sqrt(-9)+4sqrt(-36)

Simplify: (x+sqrt(x-1))^6+(x-sqrt(x-1))^6

If sqrt(x+(x)/(y))=x sqrt((x)/(y)), where x and y are positive real numbers,then y is equal to x+1 (b) x-1(c)x^(2)+1(d)x^(2)-1

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

Simplify : 1/ ( 1 + sqrt (x) )

If x=5sqrt(-25)sqrt(-36), then x is equal to