Home
Class 11
MATHS
Prove that: (i) (1-i)^(2)=-2i (ii) (...

Prove that:
(i) `(1-i)^(2)=-2i`
(ii) `(1+i)^(4)xx(1+(1)/(i))^(4)=16`
(iii) `{i^(19)+((1)/(i))^(25)}^(2)=-4`
(iv) `i^(4n)+i^(4n+1)+i^(4n+2)+i^(4n+3)=0`
(v) `2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)=1+4i`.

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (b)|9 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (c)|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=

Show that: {i^(19)+((1)/(i))^(25)}^(2)=-4( ii) {i^(17)-((1)/(i))^(34)}^(2)=2i (iii) {i^(18)+((1)/(i))^(24)}^(3)=0 (iv) i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n in N.

simplify the following 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)

(v) (1-i) ^ (2) (1 + i) - (3-4i) ^ (2)

Simplify the following : (i) 1+ i^(5)+i^(10)+i^(15) (ii) (1+i)^(4)+(1+(1)/(i))^(4) (iii) i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=(A)1(B)2(C)3(D)4

Simplify the following : (i) [i^(19) +(1)/(i^(25))]^(2) (ii) [i^(5)- (1)/(i^(3))]^(4)

1 + i^(2) + i^(4) + i^(6) = 0 .