Home
Class 11
MATHS
If sqrt(a+ib)=x+iy, then value of sqrt(a...

If `sqrt(a+ib)=x+iy`, then value of `sqrt(a-ib)` is:

A

`x+iy`

B

`x-iy`

C

`sqrt(x^(2)-y^(2))`

D

`sqrt(x^(2)+y^(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \sqrt{a + ib} = x + iy \] We need to find the value of \(\sqrt{a - ib}\). ### Step 1: Square both sides of the equation Squaring both sides gives us: \[ a + ib = (x + iy)^2 \] Expanding the right-hand side: \[ a + ib = x^2 + 2xyi - y^2 \] ### Step 2: Separate real and imaginary parts From the equation \(a + ib = (x^2 - y^2) + (2xy)i\), we can equate the real and imaginary parts: 1. Real part: \(a = x^2 - y^2\) 2. Imaginary part: \(b = 2xy\) ### Step 3: Find \(\sqrt{a - ib}\) Now, we want to find \(\sqrt{a - ib}\). We can express this as: \[ \sqrt{a - ib} = z_2 \] Assuming \(z_2 = u + iv\), we square both sides: \[ a - ib = (u + iv)^2 \] Expanding the right-hand side: \[ a - ib = u^2 - v^2 + 2uvi \] ### Step 4: Equate real and imaginary parts again From the equation \(a - ib = (u^2 - v^2) + (2uv)i\), we can equate the real and imaginary parts again: 1. Real part: \(a = u^2 - v^2\) 2. Imaginary part: \(-b = 2uv\) (or \(b = -2uv\)) ### Step 5: Relate \(u\) and \(v\) to \(x\) and \(y\) We already have from the first part: 1. \(a = x^2 - y^2\) 2. \(b = 2xy\) From the imaginary part of \(\sqrt{a - ib}\): \[ b = -2uv \] ### Step 6: Find the relationship between \(u\) and \(v\) We can see that: \[ uv = -\frac{b}{2} \] ### Step 7: Use the modulus property The modulus of both complex numbers must be equal: \[ \sqrt{a^2 + b^2} = \sqrt{x^2 + y^2} \] Squaring both sides gives: \[ a^2 + b^2 = x^2 + y^2 \] ### Step 8: Conclude the value of \(\sqrt{a - ib}\) From the properties of complex numbers, we can conclude that: \[ \sqrt{a - ib} = x - iy \] ### Final Answer Thus, the value of \(\sqrt{a - ib}\) is: \[ \sqrt{a - ib} = x - iy \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS FILL IN THE BLANKS (B)|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (j) Long Answer Type Questions|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

If sqrt(a+ib)=x+iy, then possible value of sqrt(a-ib) is x^(2)+y^(2) b.sqrt(x^(2)+y^(2)) c.x+iydx-iy e.sqrt(x^(2)-y^(2))

If sqrt(a+ib)=x+iy then prove that sqrt(a-ib)=x-iy

If sqrt(a-ib) = x-iy , prove that sqrt(a+ib) =x+iy.

If sqrt(a)+ib=x+iy prove that sqrt(a)-ib=x-iy

If sqrt(x+iy)=+-(a+ib), then find sqrt(-x-iy)

If sqrt(3)+i=(a+ib)(c+id), then find the value of tan^(-1)(b/a)+tan^(-1)(d/c)

If a + ib = sqrt((u + iv)/(x + iy)) then the value of a^2 + b^2 is:

If y=sqrt(x^(2)+6x+8), show that one value of sqrt(1+iy)+sqrt(1-iy)[i=sqrt(-1)] is sqrt(2x+8)