Home
Class 11
MATHS
If x+iy=(1+i)(1+2i)(1+3i), then x^(2)+y^...

If `x+iy=(1+i)(1+2i)(1+3i)`, then `x^(2)+y^(2)` equals:

A

`-1`

B

0

C

1

D

100

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x + iy = (1+i)(1+2i)(1+3i) \) and find \( x^2 + y^2 \), we can follow these steps: ### Step 1: Calculate the modulus of the product Using the property of modulus, we know that: \[ |z_1 z_2| = |z_1| \cdot |z_2| \] Thus, we can write: \[ |x + iy| = |(1+i)(1+2i)(1+3i)| = |1+i| \cdot |1+2i| \cdot |1+3i| \] ### Step 2: Calculate the modulus of each complex number Now we will calculate the modulus of each term: 1. For \( |1+i| \): \[ |1+i| = \sqrt{1^2 + 1^2} = \sqrt{2} \] 2. For \( |1+2i| \): \[ |1+2i| = \sqrt{1^2 + 2^2} = \sqrt{1 + 4} = \sqrt{5} \] 3. For \( |1+3i| \): \[ |1+3i| = \sqrt{1^2 + 3^2} = \sqrt{1 + 9} = \sqrt{10} \] ### Step 3: Combine the moduli Now we can combine these results: \[ |x + iy| = |1+i| \cdot |1+2i| \cdot |1+3i| = \sqrt{2} \cdot \sqrt{5} \cdot \sqrt{10} \] ### Step 4: Simplify the expression We can simplify this product: \[ |x + iy| = \sqrt{2 \cdot 5 \cdot 10} = \sqrt{100} = 10 \] ### Step 5: Relate modulus to \( x^2 + y^2 \) Since \( |x + iy| = \sqrt{x^2 + y^2} \), we can square both sides to find \( x^2 + y^2 \): \[ x^2 + y^2 = |x + iy|^2 = 10^2 = 100 \] ### Final Answer Thus, the value of \( x^2 + y^2 \) is: \[ \boxed{100} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS FILL IN THE BLANKS (B)|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (j) Long Answer Type Questions|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

If x+ iy=(1+ 4i)(1+5i) , then (x^(2)+y^(2)) is equal to :

x+iy=(1+i)(1+2i)(1+3i), then x^(2)+y^(2)=0b*1c*100d .none of these

If x+iy=(1+2i)/(2+i) prove that x^(2)+y^(2)=1

If (-7-24i)^(1/2)=x-iy , then x^(2)+y^(2) is equal to

If (1+i)^(100)=2^(49)(x+iy) then x^(2)+y^(2)=

If (1+i)^(100)=2^(49)(x+iy) then x^(2)+y^(2)=

If x+iy=sqrt((1+i)/(1-i)), prove that x^(2)+y^(2)=1